IBM宣布收购Databand.ai 把握数据可观测性的市场机会

摘要:该项收购有助于企业从源头上捕捉 "坏数据",将IBM在可观测性领域的领导地位扩展至IT全堆栈--跨基础设施、应用、数据和机器学习。

IBM宣布收购Databand.ai 把握数据可观测性的市场机会

自Arvind Krishna于2020年4月担任首席执行官以来,IBM至少已经收购了25家公司。

随着数据量继续以前所未有的速度增长,企业正努力着手对自身数据集的健康与质量进行管理,这是企业做出更好的商业决策和获得竞争优势的必由之路。数据可观测性作为一个快速增长的市场机会,正迅速成为企业关键的解决方案,用以帮助数据团队和工程师更好地了解其系统中的数据健康状况,并以近乎实时的方式自动识别、排除故障和解决问题,如异常情况、突发数据变化或数据管道故障等。Gartner数据显示,每年因数据质量问题给企业带来的平均损失达1290万美元,为了应对这一挑战,数据可观测性市场正处于强劲增长的态势[1]。

数据可观测性将传统的数据运维提升到了一个新的水平,它以历史趋势来计算数据工作负载和数据管道的统计数据,直接从源头上确定数据是否在工作,并精确指出可能存在的问题。当它与全栈可观测策略相结合时,可以帮助IT团队快速呈现并解决从基础设施和应用程序到数据和机器学习系统的问题。

在数据源于企业应用的常规情况下,Instana可以帮助用户快速解释缺失数据的确切来源以及应用服务失败的原因。

IBM数据和人工智能总经理Daniel Hernandez说:"我们的客户是数据驱动型企业,他们依靠高质量、值得信赖的数据来推动他们的关键任务流程。当他们无法在需要的时刻获得所需数据时,他们的业务就会陷入停顿。随着Databand.ai的加入,IBM可以为IT部门提供极为全面的观测能力,涵盖应用程序、数据和机器学习,并且持续为客户和合作伙伴提供他们所需的技术,使他们能够规模化的应用可信的数据与人工智能。"

数据可观测性解决方案也是企业更为广泛的数据战略和架构的一个关键部分。

Databand.ai联合创始人兼首席执行官Josh Benamram说:"你无法保护你看不到的东西,当数据平台无效时,每个人都会受到影响--包括客户。这就是为什么FanDuel、Agoda和Trax Retail这些全球品牌都在依靠Databand.ai来消除不良数据带来的意外,在它们造成代价昂贵的业务影响之前就检测和解决掉它们。加入IBM,将帮助我们扩展软件的应用,促进和提升我们满足企业客户不断变化的需求的能力。"

该交易的财务细节没有披露,该收购于2022年6月27日完成。

给TA买糖
共{{data.count}}人
人已赞赏
专栏

《我不是药神》出品公司因照片侵权被判赔2万,实控人为宁浩

2022-7-7 23:56:30

专栏发现

推特:计划按照商定条款与马斯克完成交易

2022-7-8 6:56:13

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索
Generated by Feedzy